Device Drivers:

Don't build a house on a shaky foundation

johnny cache, researcher david maynor, SecureWorks

Overview

- Problems
- Nifty Fingerprinting Stuff
- Finding and Exploiting Vulns
- Shellcode Design
- DEMOS!!!!!!

Problems?

- Speed to market is so important.
- Some things don't get tested properly
- New hardware and committee designed protocols are especially susceptible.

Problems (cont...)

- Although what follows is mostly focused on 802.11a/b/g the lessons learned can be applied to lots of things
 - Bluetooth
 - New 802.11 specs
 - Wireless data (EDGE, EV-DO, HSDPA)

802.11

- Why is it so complicated
- Does it have to be
- Can we fix it?
- Consequence's of complexity:
 - Fingerprinting 802.11 implementations
 - Exploiting device drivers

Why so complicated?

"Fear leads to anger. Anger leads to hate. Hate leads to protocols designed by committe." --warlord (?)

Why so complicated

- Partly to ambitious, partly attempting to deal with legitimate problems.
- -hidden nodes
- -unreliable links
- -other networks on same channel

Can we fix it

- Yes, all it costs is standards compliance.
- Ignore management frames
- Ignore (some?) control frames
- Remove extra's (more on these later),

Why is this interesting?

- Complexity is a hacker's best friend.
- If its not complex theres no room for bugs. No bugs means no fun.
- 802.11 is not lacking in complexity.

Ethernet

3 fields: src, dst, type.

802.11

- Version
- Type
- Subtype
- 8 flags.
- 1,2,3 or 4 addresses, variable positions
 - Frag num
 - Sequence num

Not done yet...

- Positive acknowledgement
- 11 management frames
- 6 control frames
- ..lots of subtypes for each.
- ..various encryption fields (IV, MIC/ICV, etc)

More features!

- Ad-Hoc
- Power savings
- 2 types of MAC (PCF vs DCF)
- .11e QoS
- Geo-locating proposed? WTH does 'media access control' have to do with geo-locating

What do you get when you remove the extras?

Nintendo DS

No Wi-Fi certification
Nowhere near 802.11 compliant
Ignores de-auth/disassociates
Possibly ignores control packets
Works great!
(probably doesn't roam very well)

Fingerprinting 802.11

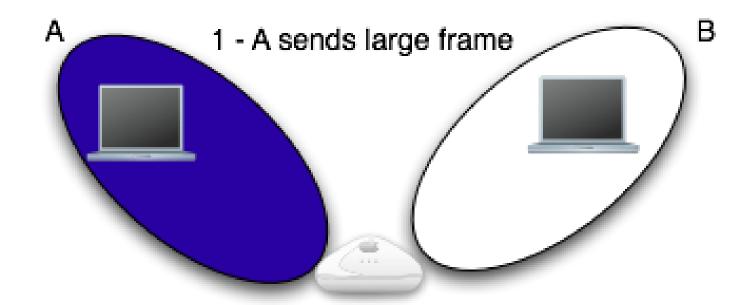
- Why bother
 - Target exploits
 - WIDS can monitor users' chipset, driver.
 - Possibly refine OS fingerprints

Fingerprinting 802.11

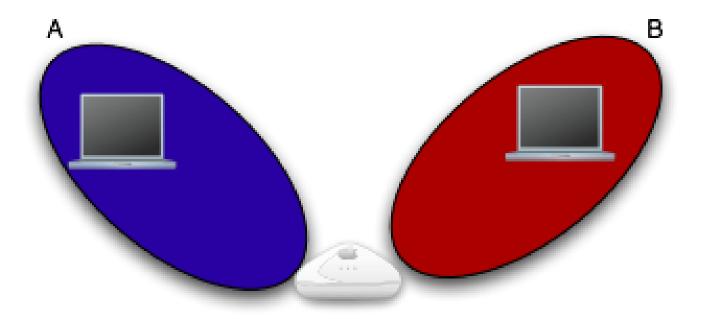
- Why is this cool
 - No other link layer protocol fingerprints that I know of
- Why is this possible?
 - Complexity of the protocol

How far down can you go?

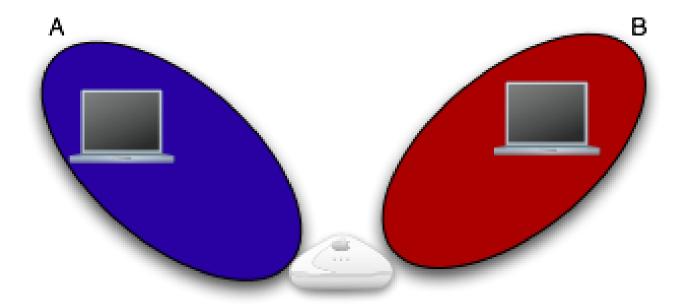
- Chipset families
- Distinct drivers for chipsets
- Different versions of the same driver
- Firmware (?)

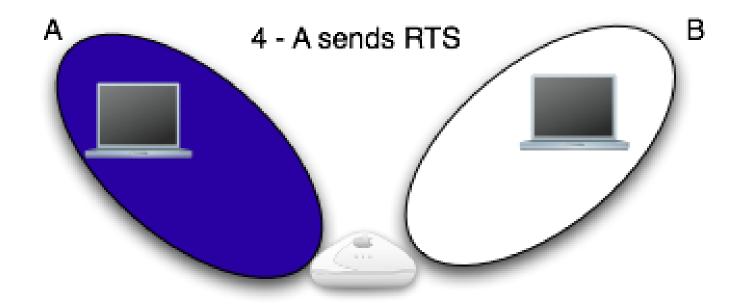


Specific fingerprints

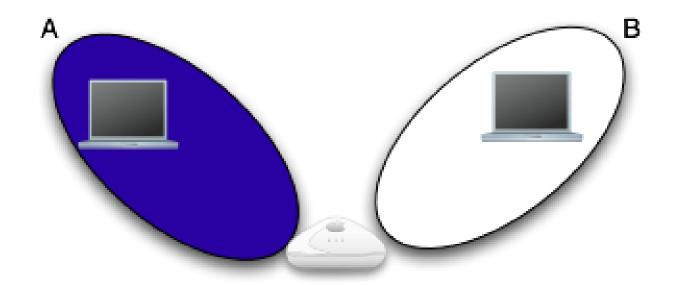

- RTS/CTS window honouring
- Association Redirection
- Duration analysis

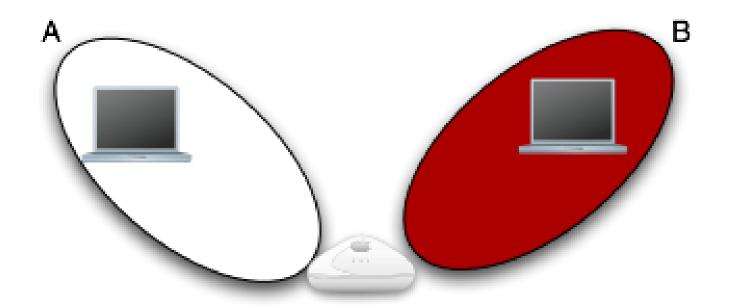
 RTS/CTS packets used to reserve media for large enough packets.





2 - halfway through, B transmits


Collision!


"I need the air for 20000 usec"

5 - AP sends CTS

6- A sends large frame, B stays quiet for 20000 usec

A finishes, B transmits when he's done

How many implementations use this?

Most? Nope.

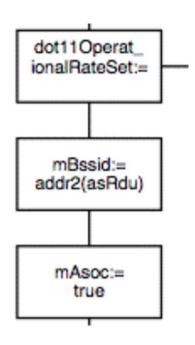
A few? Nope

None? Yes!

(under normal conditions)

If they didn't bother to implement it, they care if other people have?

- Though code was written to analyze packet dumps, results were not deterministic enough to be useful.
- Getting such a high resolution clock/timestamp very diffcult.


Association Redirection

- Active fingerprinting technique.
- High resolution.
- Mind-numbingly boring to automate.

Association Redirection

Specified in standard: pg 376

Quick Overview

Important 802.11 fields:

Src, Dst, BSSID

Typical 802.11 Traffic

10.0.0.100 00:11:95:C2:E7:8A

10.0.0.222 00:10:C6:6B:07:1D

10.0.0.1 BSSID: 00:30:BD:C0:38:9A

No	Time	Source	Destination	rotocol?	Info
23	0.253433	10.0.0.100	10.0.0.222	TCP	50300 > 50300
24	0.254762	10.0.0.100	10.0.0.222	TCP	50300 > 50300
4					

Frame 23 (80 bytes on wire, 80 bytes captured)

▼ IEEE 802.11

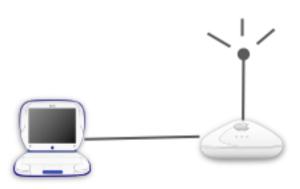
Type/Subtype: Data (32)

Frame Control: 0x0108 (Normal)

Duration: 258

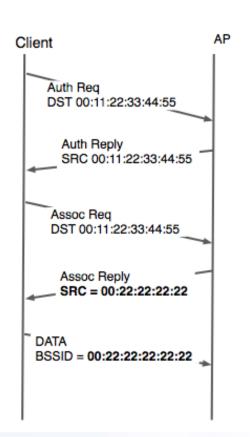
BSS Id: 00:30:bd:c0:38:9a (BelkinCo_c0:38:9a)

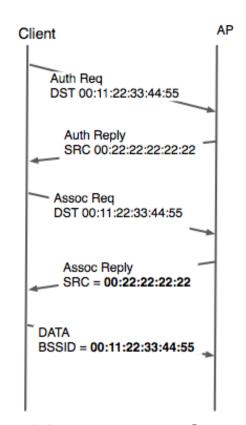
Source address: 00:11:95:c2:e7:8a (AlphaNet_c2:e7:8a)
Destination address: 00:10:c6:6b:07:1d (Usi_6b:07:1d)


Fragment number: 0 Sequence number: 3368

Logical-Link Control

▶ Internet Protocol, Src Addr: 10.0.0.100 (10.0.0.100), Dst Addr: 10.0.0.222 (10.0.0.222)


Normal 802.11 Association


Client AP Auth Reg DST=00:11:22:33:44:55 BSSID=00:11:22:33:44:55 Auth Reply SRC = 00:11:22:33:44:55 BSSID=00:11:22:33:44:55 Assoc Req DST=00:11:22:33:44:55 BSSID=00:11:22:33:44:55 -Assoc Reply SRC = 00:11:22:33:44:55 BSSID=00:11:22:33:44:55 DATA BSSID = 00:11:22:33:44:55

BSSID: 00:11:22:33:44:55

Association Redirection

Unsuccessful

Successful Black Hat Briefings

So what weird things happen?

- Cards de-auth flood null address (broadcom)
- Cards think they are on both networks?(centrino)
- Other less dramatic hijinks.

Deauth-Flood example auth-reply

-			12		
No	Time	Source	Destination	'rotocol	Info
4	0 1.315883	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Authentication
4	1 1.316220		AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
4	2 1.317122	Cimsys_33:44:55	AppleCom_f3:2f:ab	IEEE 8	Authentication
4	3 1.317466		Cimsys_33:44:55 (RA)	IEEE 8	Acknowledgement
4	4 1.318342	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Association Request, SSID: "dojooffoo"
4	5 1.318679		AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
4	6 1.319333	00:22:22:22:22	AppleCom_f3:2f:ab	IEEE 8	Association Response
4	7 1.319599		00:22:22:22:22:22 (R/	IEEE 8	Acknowledgement
4	8 1.319996	AppleCom_f3:2f:ab	00:22:22:22:22:22	IEEE 8	Deauthentication
1	0 1 331030	AnnleCom f3: Of: ah	00.22.22.22.22.22	TEEE O	Desuthentication
4 345.000					

Frame 42 (30 bytes on wire, 30 bytes captured)

▼ IEEE 802.11

Type/Subtype: Authentication (11)

Frame Control: 0x00B0 (Normal)

Duration: 314

Destination address: 00:0a:95:f3:2f:ab (AppleCom_f3:2f:ab)

Source address: 00:11:22:33:44:55 (Cimsys_33:44:55)

BSS Id: 00:11:22:33:44:55 (Cimsys_33:44:55)

Fragment number: 0 Sequence number: 108

Deauth-Flood example assoc-request

No	Time	Source	Destination	rotocol	Info
40	1.315883	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Authentication
41	1.316220		AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
42	1.317122	Cimsys_33:44:55	AppleCom_f3:2f:ab	IEEE 8	Authentication
43	1.317466		Cimsys_33:44:55 (RA)	IEEE 8	Acknowledgement
44	1.318342	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Association Request, SSID: "dojooffoo"
45	1.318679		AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
46	1.319333	00:22:22:22:22	AppleCom_f3:2f:ab	IEEE 8	Association Response
47	1.319599		00:22:22:22:22 (R/	IEEE 8	Acknowledgement
48	1.319996	AppleCom_f3:2f:ab	00:22:22:22:22	IEEE 8	Deauthentication
10	1 331030	AnnleCom f3: 2f-sh	00.22.22.22.22	TEEE O	Desuthentication

▼ IEEE 802.11

Type/Subtype: Association Request (0)

Frame Control: 0x0000 (Normal)

Duration: 314

Destination address: 00:11:22:33:44:55 (Cimsys_33:44:55) Source address: 00:0a:95:f3:2f:ab (AppleCom_f3:2f:ab)

BSS Id: 00:11:22:33:44:55 (Cimsys_33:44:55)

Fragment number: 0 Sequence number: 46

▶ IEEE 802.11 wireless LAN management frame

Deauth-Flood example assoc-reply

. •	Time	Source	Destination	rotocol	Info
40	1.315883	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Authentication
41	1.316220		AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
42	1.317122	Cimsys_33:44:55	AppleCom_f3:2f:ab	IEEE 8	Authentication
43	1.317466		Cimsys_33:44:55 (RA)	IEEE 8	Acknowledgement
44	1.318342	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Association Request, SSID: "dojooffoo"
45	1.318679	5. 5	AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
46	1.319333	00:22:22:22:22	AppleCom_f3:2f:ab	IEEE 8	Association Response
47	1.319599		00:22:22:22:22:22 (R/	IEEE 8	Acknowledgement
48	1.319996	AppleCom_f3:2f:ab	00:22:22:22:22:22	IEEE 8	Deauthentication
10	1 321020	AnnieCom f3.0f.ah	00.22.22.22.22.22	TEEE O	Deauthentication
IEEE 8				***	

Type/Subtype: Association Response (1)

▶ Frame Control: 0x0010 (Normal)

Duration: 258

Destination address: 00:0a:95:f3:2f:ab (AppleCom_f3:2f:ab)

Source address: 00:22:22:22:22 (00:22:22:22:22)

BSS Id: 00:11:22:33:44:55 (Cimsys_33:44:55)

Fragment number: 0

Sequence number: 109

▶ IEEE 802.11 wireless LAN management frame

Deuath-Flood starts

No	Time	Source	Destination	rotocol	Info
40	1.315883	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Authentication
41	1.316220		AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
42	1.317122	Cimsys_33:44:55	AppleCom_f3:2f:ab	IEEE 8	Authentication
43	1.317466		Cimsys_33:44:55 (RA)	IEEE 8	Acknowledgement
44	1.318342	AppleCom_f3:2f:ab	Cimsys_33:44:55	IEEE 8	Association Request, SSID: "dojooffoo"
45	1.318679		AppleCom_f3:2f:ab (R	IEEE 8	Acknowledgement
46	1.319333	00:22:22:22:22	AppleCom_f3:2f:ab	IEEE 8	Association Response
47	1.319599		00:22:22:22:22 (R/	IEEE 8	Acknowledgement
48	1.319996	AppleCom_f3:2f:ab	00:22:22:22:22	IEEE 81	Deauthentication
40	1 331030	AnnieCom f3: 2f-ah	00.22.22.22.22	TEEF O	Desuthentication

▼ IEEE 802.11

Type/Subtype: Deauthentication (12)

Frame Control: 0x00C0 (Normal)

Duration: 314

Destination address: 00:22:22:22:22:22 (00:22:22:22:22)
Source address: 00:0a:95:f3:2f:ab (AppleCom_f3:2f:ab)

BSS Id: 00:00:00:00:00:00 (00:00:00_00:00:00)

Fragment number: 0 Sequence number: 47

▶ IEEE 802.11 wireless LAN management frame

Association Redirection redux

- If 1 weird standards quirk is good 3 must be better!
 - Instead of just source mangle as many things as possible: src, bssid, both

Table2 here

Assocation Redir redux

- If 3 standards quirks work OK, why not 9?
- Two more tables

Tables 3 and 4 here

Association Redirection summary

- very possible to remotely version chipset
- can't really distinguish different drivers
- active technique, requires you to transmit packets.

Duration analysis

- Totally passive
- Very accurate
- Easy to automate
- Only basic statistical techniques used.

What is a duration?

Time	HW-src	HW-dst	rotocol	Info
21:07:18.620	00:0a:95:f3:2f:ab	ff:ff:ff:ff:ff	IEEE 8	Data
2 21:07:21.388	00:0a:95:f3:2f:ab	ff:ff:ff:ff:ff	IEEE 8	Data
3 21:07:23.428	00:0a:95:f3:2f:ab	ff:ff:ff:ff:ff	IEEE 8	Data
21:07:23.429	00:0a:95:f3:2f:ab	ff:ff:ff:ff:ff	IEEE 8	Data
	1 21:07:18.620 2 21:07:21.388 3 21:07:23.428	Time HW-src 21:07:18.620 00:0a:95:f3:2f:ab 21:07:21.388 00:0a:95:f3:2f:ab 3 21:07:23.428 00:0a:95:f3:2f:ab 4 21:07:23.429 00:0a:95:f3:2f:ab	L 21:07:18.620 00:0a:95:f3:2f:ab	L 21:07:18.620 00:0a:95:f3:2f:ab

Frame 3 (68 bytes on wire, 68 bytes captured)

▼ IEEE 802.11

Type/Subtype: Data (32)

▶ Frame Control: 0x4108 (Normal)

Duration: 258

BSS Id: 00:30:bd:c0:38:9a (00:30:bd:c0:38:9a)

Source address: 00:0a:95:f3:2f:ab (00:0a:95:f3:2f:ab)

Fragment number: 0 Sequence number: 1286

WFP parameters

What influences duration values.

- Rate (.11b, .11g)
- Short slot time (g only)
- Short pre amble

Example atheros fingerprint

Well behaved atheros card:

```
CTS: 0
pwrmgmt: 1
frag: 0
order: 0
```

```
-----
```

Example prism fingerprint

poorly behaved prism card:

```
CTS: 0
pwrmgmt: 1
frag: 0
order: 0
<0 0>
       Duration( (258) )
                                      //assoc req
       Duration((0))
<0 4>
                                      //probe req
<0 11> Duration((53389))
                                      //auth
<0 12> Duration((258) (314))
                                      //de-auth
       Duration((213)(0)(223))
<2 0>
                                      //data
<2 4>
       Duration((37554))
                                      //null-func
```

Simple example

Duration match 2 prints here

//duration-pi		//duration-print-matcher -a		
00:12:17:79:10	C:B0 -p ./pcaps/ 1-3 -	00:04:E2:80:2C:21 -p ./pcaps/ 9-3 -		
lexie.pcap -f ./j	prints/1.prnt ./prints/9.prnt	lexie.pcap -f ./prints/1.prnt ./prints/9.prnt		
Score:	ID	Score:	ID	
29800.00	1 //atheros card	50600.00	9 //prism card	
13000.00	9 //prism card	13000.00	1 //atheros card	

Simple example cont.

//duration-pr	int-matcher -a	//duration-print-matcher -a		
00:12:17:79:1C	C:B0 -p ./pcaps/1-3-	00:04:E2:80:2C:21 -p ./pcaps/9-3-		
lexie.pcap -f ./p	orints/ *.prnt	lexie.pcap -f ./prints/*.prnt		
Score:	ID	Score:	ID	
24802.86	2 //Atheros	172256.43	9 //prism	
23785.00	1 //Atheros	21138.57	10 //broadcom	
23785.00	3 //Atheros	18982.62	11 //PSP	
23785.00	4 //Atheros	17738.57	5 //broadcom	
19645.71	7 //centrino	11774.29	2 //atheros	
17610.00	10 //broadcom	10417.14	7 //centrino	
16110.00	6 //broadcom	10161.19	13 //aironet 350	
13327.86	13 //aironet 350	10138.57	6 //broadcom	
12880.00	12 //Ninteno DS	10077.86	4 //atheros	
12310.00	5 //broadcom	10077.86	3 //atheros	
10077.86	9 //prism	10077.86	1 //atheros	
9060.00	8 //ralink	9060.00	8 //ralink	
8577.86	11 //PSP	5280.00	12 //Nintendo DS	

Real life example (centrino)

```
../../duration-print-matcher -a 00:0E:35:E9:C9:5B
./pcaps/7-2-mixed--wrt54g.pcap -f ./prints/*.prnt
Score:
              ID
58404.88
                      //centrino
44365.05
              13
                      //aironet 350
                      //prism2.5
              9
38781.71
37394.32
                      //broadcom 4306
32883.61
                     //atheros ar5212
32883.61
                      //atheros ar5212
                      //broadcom (apple)
31553.30
                      //atheros 5212
26508.61
24100.27
              10
                      //broadcom bcm4318
22051.56
              3
                      //atheros ar5212
19526.16
              11
                     //PSP
              8
14103.69
                      //Ralink RA2570
12248.00
              12
                      //Nintendo D S
```


Unknown Ralink example

tcpdump -i rausb0 -s 0 -w unknown.pcap

```
../../duration-print-matcher -a 00:13:D4:6F:13:A9 -
p ./unknown.pcap -f ./prints/*.prnt
Score
              ID
84719.08
                   //Ralink
14103.69
                   //atheros
              2
14103.69
                   //atheros
14103.69
              10
                  //broadcom
                   //atheros
14103.69
13319.08
                   //centrino
12603 69
                   //broadcom
11819.08
                   //broadcom
9396.00
                   //prism
9396.00
                   //atheros
7896.00
              13
                   //aironet
                   //PSP
7896.00
              11
5448.00
                   //Nintendo DS
```


So how's it work?

--MagicStats Duration summarry--Total number of unique durations: 12

Total volume: 95

dur	times_seen	prob	weight
0,		0.2632,	3.8000
117,	8,	0.0842,	11.8750
127,	2,	0.0211,	47.5000
152,	1,	0.0105,	95.0000
162,	15,	0.1579,	6.3333
213,	5,	0.0526,	19.0000
223,	1,	0.0105,	95.0000
248,	2,	0.0211,	47.5000
258,	6,	0.0632,	15.8333
314,	28,	0.2947,	3.3929
37554	1, 1,	0.0105,	95.0000
53389), 1,	0.0105,	95.0000

Atheros print

```
CTS: 0
pwrmgmt: 1
frag: 0
order: 0
-----
<0 0> Duration( (314) )
<0 4> Duration( (0) (314) )
<0 11> Duration( (314) )
<2 0> Duration( (162) (0) )
<2 4> Duration( (162) )
```

So how's it work?

- Compute fingerprint across input pcap.
- Fuzzilly compare it to all known fingerprints.
 - For every matching duration in comparison print,
 add points proportional to weight for that duration.
 - Bonus points for matching type, subtype, and duration all at once.

Fuzzy compare

- For every matching duration in comparison print, add points proportional to weight for that duration.
- Bonus points for matching type, subtype, and duration all at once.

Also tracks a few other flags

Flag value ratio prob weight

CTS: 1 0/12 0.0000 inf

CTS: 0 12/12 1.0000 1.0000

PwrMgmt: 1 8/12 0.6667 1.5000

PwrMgmt: 0 4/12 0.3333 3.0000

frag: 1 0/12 0.0000 inf

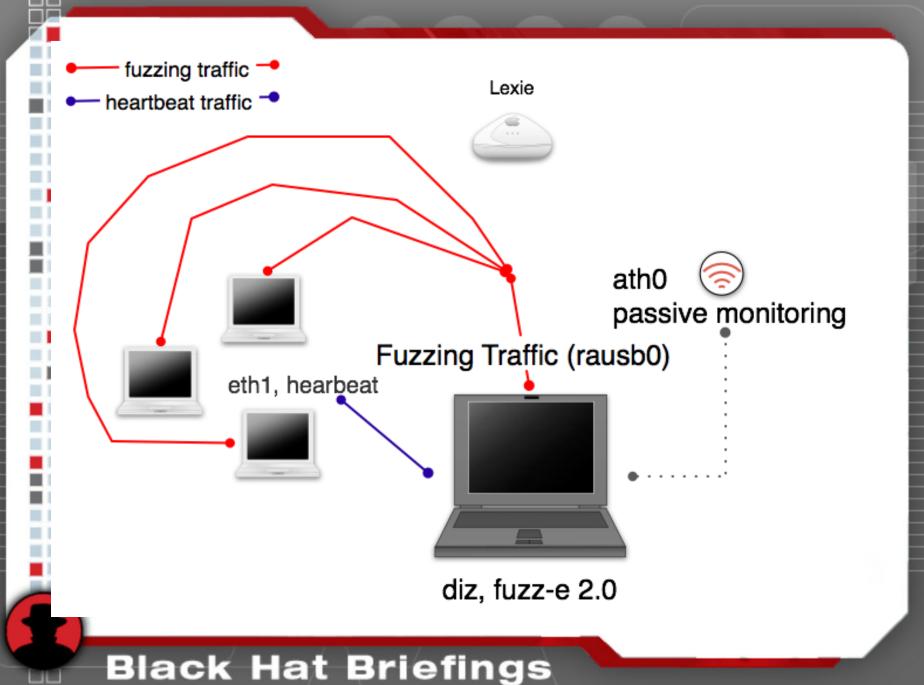
frag: 0 12/12 1.0000 1.0000

order: 1 0/12 0.0000 inf

order: 0 12/12 1.0000 1.0000

how accurate is it?

- When run across my own set of training data, the following results apply:
- B-only (0x0021 flags, lexie)
 - 26 times better than random
- mixed-BG (0x0401/0x0001 flags)
 - 18 times better than random


Ways to find bugs?

- Static auditing
- Fuzzing

Things to think about

- Fuzzing can be frustrating
 - A bug could be triggered by something 8 packet chains ago
 - Hard to track down in ring0

fuzz-e

```
johnycsh@diz:fuzz-e )$./fuzz-e -R -A -P ath0 -n 500
-r rt2570 -i rausb0 -c 11 -D ./dest-addys.txt
u20000
-s 00:07:0E:B9:74:BB -b 00:07:0E:B9:74:BB -E log.txt
                       random delays
      -R
      -A
                       autonomous mode (don't stop)
      -P
                       passive interface to sniff on
      -n 500
                       send 500 packets per cycle
                       driver to inject with
      -r rt2570
                       inject on rausb0
      -i rausb0
      -c 11
                      set channel to 11
      -D dest-addys
                       specify list of victims
      -w u20000
                       wait 200000 usecs (max)
                       source address of packets
      -S
                       bssid of packets
      -b
      -E
                       log events to log.txt
```

Shellcode

- Most often a direct return shell is not possible.
- Bots or other malicious shellcode have to be designed.

DEMOS

(there are a few)